Mountpoint for Amazon S3 – Generally Available and Ready for Production Workloads | AWS News Blog

Mountpoint for Amazon S3 is an open source file client that makes it easy for your file-aware Linux applications to connect directly to Amazon Simple Storage Service (Amazon S3) buckets. Announced earlier this year as an alpha release, it is now generally available and ready for production use on your large-scale read-heavy applications: data lakes, machine learning training, image rendering, autonomous vehicle simulation, ETL, and more. It supports file-based workloads that perform sequential and random reads, sequential (append only) writes, and that don’t need full POSIX semantics.

Mountpoint for Amazon S3 – Generally Available and Ready for Production Workloads

 

Demystifying Text Data with the unstructured Python Library | Saeed Esmaili

In the world of data, textual data stands out as being particularly complex. It doesn’t fall into neat rows and columns like numerical data does. As a side project, I’m in the process of developing my own personal AI assistant. The objective is to use the data within my notes and documents to answer my questions. The important benefit is all data processing will occure locally on my computer, ensuring that no documents are uploaded to the cloud, and my documents will remain private.

To handle such unstructured data, I’ve found the unstructured Python library to be extremely useful. It’s a flexible tool that works with various document formats, including Markdown, , XML, and HTML documents.

Demystifying Text Data with the unstructured Python Library — https://saeedesmaili.com/demystifying-text-data-with-the-unstructured-python-library/

AI Reading List 7/6/2023

What I’m reading today.

 

Configuring Jupyter Notebook in Windows Subsystem Linux (WSL2) | by Cristian Saavedra Desmoineaux | Towards Data Science

Here’s a great quick start guide to getting Jupyter Notebook and Lab up and running with the Miniconda environment in WSL2 running Ubuntu. When you’re finished walking through the steps you’ll have a great data science space up and running on your Windows machine.

I am going to explain how to configure Windows 10 and Miniconda to work with Notebooks using WSL2

Source: Configuring Jupyter Notebook in Windows Subsystem Linux (WSL2) | by Cristian Saavedra Desmoineaux | Towards Data Science

AI Reading List 7/5/2023

The longer holiday weekend  edition.

 

AI Reading List 6/27/2023

What I’m reading today.

 

An interesting approach to pruning large language models

an image comparing magnitude pruning of an LLM with Wanda pruning of an LLM

Large language models (LLM) are notoriously huge and expensive to work with. An LLM requires a lot of specialized hardware to train and manipulate. We’ve seen efforts to transform and quantize the models that result in smaller footprints and models that run more readily on commodity software but at the cost of performance.  Now we’re seeing efforts to make the models smaller but still perform as well as the full model.

This paper, A Simple and Effective Pruning Approach for Large Language Models, introduces us to Wanda (Pruning by Weights and activations). Here’s the synopsis:

As their size increases, Large Languages Models (LLMs) are natural candidates for network pruning methods: approaches that drop a subset of network weights while striving to preserve performance. Existing methods, however, require either retraining, which is rarely affordable for billion-scale LLMs, or solving a weight reconstruction problem reliant on second-order information, which may also be computationally expensive. In this paper, we introduce a novel, straightforward yet effective pruning method, termed Wanda (Pruning by Weights and activations), designed to induce sparsity in pretrained LLMs. Motivated by the recent observation of emergent large magnitude features in LLMs, our approach prune weights with the smallest magnitudes multiplied by the corresponding input activations, on a per-output basis. Notably, Wanda requires no retraining or weight update, and the pruned LLM can be used as is. We conduct a thorough evaluation of our method on LLaMA across various language benchmarks. Wanda significantly outperforms the established baseline of magnitude pruning and competes favorably against recent methods involving intensive weight update. Code is available at this https URL.

As noted the code behind that paper is readily available on Github at https://github.com/locuslab/wanda for everyone to try.

I think these advances in working with large language models are going to make it more economical for us to host our models and incorporate various NLP and deep learning techniques into our work.